summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorTravis Scrimshaw <tscrimsh at umn.edu>2016-04-26 23:57:30 -0500
committerTravis Scrimshaw <tscrimsh at umn.edu>2016-04-26 23:57:30 -0500
commitc7676969c52b01a7337d7fcc87ed1affb86d9765 (patch)
tree985af665f6915f574445ca04ab76962a38a44c61
parentUpdated SageMath version to 7.2.beta5 (diff)
parentMerge into the latest version of #18529; improve treatment of composite funct... (diff)
Merge branch 'public/manifolds/top_manif_scalar_fields' of trac.sagemath.org:sage into public/manifolds/top_manif_scalar_fields
-rw-r--r--src/doc/en/reference/manifolds/chart.rst11
-rw-r--r--src/doc/en/reference/manifolds/index.rst4
-rw-r--r--src/doc/en/reference/manifolds/manifold.rst4
-rw-r--r--src/doc/en/reference/manifolds/scalarfield.rst9
-rw-r--r--src/sage/manifolds/all.py3
-rw-r--r--src/sage/manifolds/chart.py304
-rw-r--r--src/sage/manifolds/coord_func.py1762
-rw-r--r--src/sage/manifolds/coord_func_symb.py1664
-rw-r--r--src/sage/manifolds/manifold.py282
-rw-r--r--src/sage/manifolds/scalarfield.py2790
-rw-r--r--src/sage/manifolds/scalarfield_algebra.py625
-rw-r--r--src/sage/manifolds/structure.py3
-rw-r--r--src/sage/manifolds/utilities.py926
13 files changed, 8355 insertions, 32 deletions
diff --git a/src/doc/en/reference/manifolds/chart.rst b/src/doc/en/reference/manifolds/chart.rst
new file mode 100644
index 00000000..0ba9dc6
--- /dev/null
+++ b/src/doc/en/reference/manifolds/chart.rst
@@ -0,0 +1,11 @@
+Coordinate Charts
+=================
+
+.. toctree::
+ :maxdepth: 2
+
+ sage/manifolds/chart
+
+ sage/manifolds/coord_func
+
+ sage/manifolds/coord_func_symb
diff --git a/src/doc/en/reference/manifolds/index.rst b/src/doc/en/reference/manifolds/index.rst
index f0d5932..13995d6 100644
--- a/src/doc/en/reference/manifolds/index.rst
+++ b/src/doc/en/reference/manifolds/index.rst
@@ -11,8 +11,10 @@ More documentation (in particular example worksheets) can be found
`here <http://sagemanifolds.obspm.fr/documentation.html>`_.
.. toctree::
- :maxdepth: 2
+ :maxdepth: 3
manifold
+ sage/manifolds/utilities
+
.. include:: ../footer.txt
diff --git a/src/doc/en/reference/manifolds/manifold.rst b/src/doc/en/reference/manifolds/manifold.rst
index d9364a3..3ac4f04 100644
--- a/src/doc/en/reference/manifolds/manifold.rst
+++ b/src/doc/en/reference/manifolds/manifold.rst
@@ -12,4 +12,6 @@ Topological Manifolds
sage/manifolds/point
- sage/manifolds/chart
+ chart
+
+ scalarfield
diff --git a/src/doc/en/reference/manifolds/scalarfield.rst b/src/doc/en/reference/manifolds/scalarfield.rst
new file mode 100644
index 00000000..3ba7a2e
--- /dev/null
+++ b/src/doc/en/reference/manifolds/scalarfield.rst
@@ -0,0 +1,9 @@
+Scalar Fields
+=============
+
+.. toctree::
+ :maxdepth: 2
+
+ sage/manifolds/scalarfield_algebra
+
+ sage/manifolds/scalarfield
diff --git a/src/sage/manifolds/all.py b/src/sage/manifolds/all.py
index 990657e..01834c1 100644
--- a/src/sage/manifolds/all.py
+++ b/src/sage/manifolds/all.py
@@ -1,3 +1,4 @@
from sage.misc.lazy_import import lazy_import
lazy_import('sage.manifolds.manifold', 'Manifold')
-
+lazy_import('sage.manifolds.utilities', 'nice_derivatives')
+lazy_import('sage.manifolds.utilities', 'omit_function_args')
diff --git a/src/sage/manifolds/chart.py b/src/sage/manifolds/chart.py
index 6a6194b..8be827d 100644
--- a/src/sage/manifolds/chart.py
+++ b/src/sage/manifolds/chart.py
@@ -40,6 +40,7 @@ from sage.structure.unique_representation import UniqueRepresentation
from sage.symbolic.ring import SR
from sage.rings.infinity import Infinity
from sage.misc.latex import latex
+from sage.manifolds.coord_func_symb import CoordFunctionSymb
class Chart(UniqueRepresentation, SageObject):
r"""
@@ -309,6 +310,24 @@ class Chart(UniqueRepresentation, SageObject):
self._dom_restrict = {} # dict. of the restrictions of self to
# subsets of self._domain, with the
# subsets as keys
+ # The null and one functions of the coordinates:
+ base_field_type = self._domain.base_field_type()
+ if base_field_type in ['real', 'complex']:
+ self._zero_function = CoordFunctionSymb(self, 0)
+ self._one_function = CoordFunctionSymb(self, 1)
+ else:
+ base_field = self._domain.base_field()
+ self._zero_function = CoordFunctionSymb(self, base_field.zero())
+ self._one_function = CoordFunctionSymb(self, base_field.one())
+ # Expression in self of the zero and one scalar fields of open sets
+ # containing the domain of self:
+ for dom in self._domain._supersets:
+ if hasattr(dom, '_zero_scalar_field'):
+ # dom is an open set
+ dom._zero_scalar_field._express[self] = self._zero_function
+ if hasattr(dom, '_one_scalar_field'):
+ # dom is an open set
+ dom._one_scalar_field._express[self] = self._one_function
def _init_coordinates(self, coord_list):
r"""
@@ -825,6 +844,234 @@ class Chart(UniqueRepresentation, SageObject):
transformations = [transformations]
return CoordChange(chart1, chart2, *transformations)
+ def function(self, expression):
+ r"""
+ Define a coordinate function to the base field.
+
+ If the current chart belongs to the atlas of a `n`-dimensional manifold
+ over a topological field `K`, a *coordinate function* is a map
+
+ .. MATH::
+
+ \begin{array}{cccc}
+ f:& V\subset K^n & \longrightarrow & K \\
+ & (x^1,\ldots, x^n) & \longmapsto & f(x^1,\ldots, x^n),
+ \end{array}
+
+ where `V` is the chart codomain and `(x^1,\ldots, x^n)` are the
+ chart coordinates.
+
+ The coordinate function can be either a symbolic one or a numerical
+ one, depending on the parameter ``expression`` (see below).
+
+ See :class:`~sage.manifolds.coord_func.CoordFunction`
+ and :class:`~sage.manifolds.coord_func_symb.CoordFunctionSymb`
+ for a complete documentation.
+
+ INPUT:
+
+ - ``expression`` -- material defining the coordinate function; it can
+ be either:
+
+ - a symbolic expression involving the chart coordinates, to represent
+ `f(x^1,\ldots, x^n)`
+ - a string representing the name of a file where the data
+ to construct a numerical coordinate function is stored
+
+ OUTPUT:
+
+ - instance of a subclass of the base class
+ :class:`~sage.manifolds.coord_func.CoordFunction`
+ representing the coordinate function `f`; this is
+ :class:`~sage.manifolds.coord_func_symb.CoordFunctionSymb` if
+ if ``expression`` is a symbolic expression.
+
+ EXAMPLES:
+
+ A symbolic coordinate function::
+
+ sage: M = Manifold(2, 'M', structure='topological')
+ sage: X.<x,y> = M.chart()
+ sage: f = X.function(sin(x*y))
+ sage: f
+ sin(x*y)
+ sage: type(f)
+ <class 'sage.manifolds.coord_func_symb.CoordFunctionSymb'>
+ sage: f.display()
+ (x, y) |--> sin(x*y)
+ sage: f(2,3)
+ sin(6)
+
+ """
+ if isinstance(expression, str):
+ raise NotImplementedError("numerical coordinate function not " +
+ "implemented yet")
+ else:
+ return CoordFunctionSymb(self, expression)
+
+ def zero_function(self):
+ r"""
+ Return the zero function of the coordinates.
+
+ If the current chart belongs to the atlas of a `n`-dimensional manifold
+ over a topological field `K`, the zero coordinate function is the map
+
+ .. MATH::
+
+ \begin{array}{cccc}
+ f:& V\subset K^n & \longrightarrow & K \\
+ & (x^1,\ldots, x^n) & \longmapsto & 0,
+ \end{array}
+
+ where `V` is the chart codomain.
+
+ See class :class:`~sage.manifolds.coord_func_symb.CoorFunctionSymb`
+ for a complete documentation.
+ OUTPUT:
+
+ - instance of class
+ :class:`~sage.manifolds.coord_func_symb.CoorFunctionSymb`
+ representing the zero coordinate function `f`.
+
+ EXAMPLES::
+
+ sage: M = Manifold(2, 'M', structure='topological')
+ sage: X.<x,y> = M.chart()
+ sage: X.zero_function()
+ 0
+ sage: X.zero_function().display()
+ (x, y) |--> 0
+ sage: type(X.zero_function())
+ <class 'sage.manifolds.coord_func_symb.CoordFunctionSymb'>
+
+ The result is cached::
+
+ sage: X.zero_function() is X.zero_function()
+ True
+
+ Zero function on a p-adic manifold::
+
+ sage: M = Manifold(2, 'M', structure='topological', field=Qp(5)); M
+ 2-dimensional topological manifold M over the 5-adic Field with
+ capped relative precision 20
+ sage: X.<x,y> = M.chart()
+ sage: X.zero_function()
+ 0
+ sage: X.zero_function().display()
+ (x, y) |--> 0
+
+ """
+ return self._zero_function
+
+ def one_function(self):
+ r"""
+ Return the constant function of the coordinates equal to one.
+
+ If the current chart belongs to the atlas of a `n`-dimensional manifold
+ over a topological field `K`, the "one" coordinate function is the map
+
+ .. MATH::
+
+ \begin{array}{cccc}
+ f:& V\subset K^n & \longrightarrow & K \\
+ & (x^1,\ldots, x^n) & \longmapsto & 1,
+ \end{array}
+
+ where `V` is the chart codomain.
+
+ See class :class:`~sage.manifolds.coord_func_symb.CoorFunctionSymb`
+ for a complete documentation.
+ OUTPUT:
+
+ - instance of class
+ :class:`~sage.manifolds.coord_func_symb.CoorFunctionSymb`
+ representing the one coordinate function `f`.
+
+ EXAMPLES::
+
+ sage: M = Manifold(2, 'M', structure='topological')
+ sage: X.<x,y> = M.chart()
+ sage: X.one_function()
+ 1
+ sage: X.one_function().display()
+ (x, y) |--> 1
+ sage: type(X.one_function())
+ <class 'sage.manifolds.coord_func_symb.CoordFunctionSymb'>
+
+ The result is cached::
+
+ sage: X.one_function() is X.one_function()
+ True
+
+ One function on a p-adic manifold::
+
+ sage: M = Manifold(2, 'M', structure='topological', field=Qp(5)); M
+ 2-dimensional topological manifold M over the 5-adic Field with
+ capped relative precision 20
+ sage: X.<x,y> = M.chart()
+ sage: X.one_function()
+ 1 + O(5^20)
+ sage: X.one_function().display()
+ (x, y) |--> 1 + O(5^20)
+
+ """
+ return self._one_function
+
+
+ def multifunction(self, *expressions):
+ r"""
+ Define a coordinate function to some Cartesian power of the base field.
+
+ If `n` and `m` are two positive integers and `(U,\varphi)` is a chart on
+ a topological manifold `M` of dimension `n` over a topological field `K`,
+ a *multi-coordinate function* associated to `(U,\varphi)` is a map
+
+ .. MATH::
+
+ \begin{array}{llcl}
+ f:& V \subset K^n & \longrightarrow & K^m \\
+ & (x^1,\ldots,x^n) & \longmapsto & (f_1(x^1,\ldots,x^n),\ldots,
+ f_m(x^1,\ldots,x^n)) ,
+ \end{array}
+
+ where `V` is the codomain of `\varphi`. In other words, `f` is a
+ `K^m`-valued function of the coordinates associated to the chart
+ `(U,\varphi)`.
+
+ See :class:`~sage.manifolds.coord_func.MultiCoordFunction` for a
+ complete documentation.
+
+ INPUT:
+
+ - ``expressions`` -- list (or tuple) of `m` elements to construct the
+ coordinate functions `f_i` (`1\leq i \leq m`); for
+ symbolic coordinate functions, this must be symbolic expressions
+ involving the chart coordinates, while for numerical coordinate
+ functions, this must be data file names
+
+ OUTPUT:
+
+ - an instance of :class:`~sage.manifolds.coord_func.MultiCoordFunction`
+ representing `f`
+
+ EXAMPLE:
+
+ Function of two coordinates with values in `\RR^3`::
+
+ sage: M = Manifold(2, 'M', structure='topological')
+ sage: X.<x,y> = M.chart()
+ sage: f = X.multifunction(x+y, sin(x*y), x^2 + 3*y); f
+ Coordinate functions (x + y, sin(x*y), x^2 + 3*y) on the Chart (M, (x, y))
+ sage: type(f)
+ <class 'sage.manifolds.coord_func.MultiCoordFunction'>
+ sage: f(2,3)
+ (5, sin(6), 13)
+
+ """
+ from sage.manifolds.coord_func import MultiCoordFunction
+ return MultiCoordFunction(self, expressions)
+
+
#*****************************************************************************
class RealChart(Chart):
@@ -1412,6 +1659,7 @@ class RealChart(Chart):
self._bounds = tuple(bounds)
self._restrictions = new_restrictions
+
def restrict(self, subset, restrictions=None):
r"""
Return the restriction of the chart to some open subset of its domain.
@@ -1599,7 +1847,6 @@ class RealChart(Chart):
# All tests have been passed:
return True
-
#*****************************************************************************
class CoordChange(SageObject):
@@ -1669,10 +1916,9 @@ class CoordChange(SageObject):
+ "must be provided")
self._chart1 = chart1
self._chart2 = chart2
- #*# when MultiCoordFunction will be implemented (trac #18640):
- # self._transf = chart1.multifunction(*transformations)
- #*# for now:
- self._transf = transformations
+ # The coordinate transformations are implemented via the class
+ # MultiCoordFunction:
+ self._transf = chart1.multifunction(*transformations)
self._inverse = None
# If the two charts are on the same open subset, the coordinate change
# is added to the subset (and supersets) dictionary:
@@ -1791,12 +2037,7 @@ class CoordChange(SageObject):
(3, -1)
"""
- #*# When MultiCoordFunction is implemented (trac #18640):
- # return self._transf(*coords)
- #*# for now:
- substitutions = {self._chart1._xx[j]: coords[j] for j in range(self._n1)}
- return tuple([self._transf[i].subs(substitutions).simplify_full()
- for i in range(self._n2)])
+ return self._transf(*coords)
def inverse(self):
r"""
@@ -1832,6 +2073,8 @@ class CoordChange(SageObject):
"""
from sage.symbolic.relation import solve
+ from sage.manifolds.utilities import simplify_chain_real, \
+ simplify_chain_generic
if self._inverse is not None:
return self._inverse
# The computation is necessary:
@@ -1857,10 +2100,7 @@ class CoordChange(SageObject):
coord_domain[i] = 'positive'
xp2 = [ SR.var('xxxx' + str(i), domain=coord_domain[i])
for i in range(n2) ]
- #*# when MultiCoordFunction will be implemented (trac #18640):
- # xx2 = self._transf.expr()
- #*# for now:
- xx2 = self._transf
+ xx2 = self._transf.expr()
equations = [xp2[i] == xx2[i] for i in range(n2)]
try:
solutions = solve(equations, *x1, solution_dict=True)
@@ -1871,6 +2111,14 @@ class CoordChange(SageObject):
if len(solutions) == 1:
x2_to_x1 = [solutions[0][x1[i]].subs(substitutions)
for i in range(n1)]
+ for transf in x2_to_x1:
+ try:
+ if self._domain.base_field_type() == 'real':
+ transf = simplify_chain_real(transf)
+ else:
+ transf = simplify_chain_generic(transf)
+ except AttributeError:
+ pass
else:
list_x2_to_x1 = []
for sol in solutions:
@@ -1879,6 +2127,14 @@ class CoordChange(SageObject):
"set_inverse() to set the inverse " +
"manually")
x2_to_x1 = [sol[x1[i]].subs(substitutions) for i in range(n1)]
+ for transf in x2_to_x1:
+ try:
+ if self._domain.base_field_type() == 'real':
+ transf = simplify_chain_real(transf)
+ else:
+ transf = simplify_chain_generic(transf)
+ except AttributeError:
+ pass
if self._chart1.valid_coordinates(*x2_to_x1):
list_x2_to_x1.append(x2_to_x1)
if len(list_x2_to_x1) == 0:
@@ -1938,7 +2194,7 @@ class CoordChange(SageObject):
sage: spher_to_cart.set_inverse(sqrt(x^3+y^2), atan2(y,x), verbose=True)
Check of the inverse coordinate transformation:
- r == sqrt(r^3*cos(ph)^3 + r^2*sin(ph)^2)
+ r == sqrt(r*cos(ph)^3 + sin(ph)^2)*r
ph == arctan2(r*sin(ph), r*cos(ph))
x == sqrt(x^3 + y^2)*x/sqrt(x^2 + y^2)
y == sqrt(x^3 + y^2)*y/sqrt(x^2 + y^2)
@@ -1992,10 +2248,7 @@ class CoordChange(SageObject):
raise ValueError("composition not possible: " +
"{} is different from {}".format(other._chart2,
other._chart1))
- #*# when MultiCoordFunction will be implemented (trac #18640):
- # transf = self._transf(*(other._transf.expr()))
- #*# for now:
- transf = self(*(other._transf))
+ transf = self._transf(*(other._transf.expr()))
return type(self)(other._chart1, self._chart2, *transf)
def restrict(self, dom1, dom2=None):
@@ -2038,12 +2291,8 @@ class CoordChange(SageObject):
ch2 = self._chart2.restrict(dom2)
if (ch1, ch2) in dom1.coord_changes():
return dom1.coord_changes()[(ch1,ch2)]
- #*# when MultiCoordFunction will be implemented (trac #18640):
- # return type(self)(self._chart1.restrict(dom1),
- # self._chart2.restrict(dom2), *(self._transf.expr()))
- #*# for now:
return type(self)(self._chart1.restrict(dom1),
- self._chart2.restrict(dom2), *(self._transf))
+ self._chart2.restrict(dom2), *(self._transf.expr()))
def display(self):
r"""
@@ -2079,10 +2328,7 @@ class CoordChange(SageObject):
from sage.tensor.modules.format_utilities import FormattedExpansion
coords2 = self._chart2[:]
n2 = len(coords2)
- #*# when MultiCoordFunction will be implemented (trac #18640):
- # expr = self._transf.expr()
- #*# for now:
- expr = self._transf
+ expr = self._transf.expr()
rtxt = ""
if n2 == 1:
rlatex = r"\begin{array}{lcl}"
diff --git a/src/sage/manifolds/coord_func.py b/src/sage/manifolds/coord_func.py
new file mode 100644
index 00000000..9ae3324
--- /dev/null
+++ b/src/sage/manifolds/coord_func.py
@@ -0,0 +1,1762 @@
+r"""
+Coordinate Functions
+
+In the context of a topological manifold `M` over a topological field `K`,
+a *coordinate function* is a function from a chart codomain
+to `K`. In other words, a coordinate function is a `K`-valued function of
+the coordinates associated to some chart.
+
+More precisely, let `(U,\varphi)` be a chart on `M`, i.e. `U` is an open
+subset of `M` and `\varphi: U \rightarrow V \subset K^n` is a homeomorphism
+from `U` to an open subset `V` of `K^n`. A *coordinate function associated
+to the chart* `(U,\varphi)` is a function
+
+.. MATH::
+
+ \begin{array}{cccc}
+ f:& V\subset K^n & \longrightarrow & K \\
+ & (x^1,\ldots, x^n) & \longmapsto & f(x^1,\ldots, x^n)
+ \end{array}
+
+Coordinate functions are implemented by derived classes of the abstract base
+class :class:`CoordFunction`.
+
+The class :class:`MultiCoordFunction` implements `K^m`-valued functions of the
+coordinates of a chart, with $m$ a positive integer.
+
+AUTHORS:
+
+- Eric Gourgoulhon, Michal Bejger (2013-2015) : initial version
+
+"""
+#*****************************************************************************
+# Copyright (C) 2015 Eric Gourgoulhon <eric.gourgoulhon@obspm.fr>
+# Copyright (C) 2015 Michal Bejger <bejger@camk.edu.pl>
+#
+# Distributed under the terms of the GNU General Public License (GPL)
+# as published by the Free Software Foundation; either version 2 of
+# the License, or (at your option) any later version.
+# http://www.gnu.org/licenses/
+#*****************************************************************************
+
+from sage.structure.sage_object import SageObject
+from sage.misc.latex import latex
+
+class CoordFunction(SageObject):
+ r"""
+ Abstract base class for coordinate functions.
+
+ If `(U,\varphi)` is a chart on a topological manifold `M` of dimension `n`
+ over a topological field `K`, a *coordinate function* associated to
+ `(U,\varphi)` is a map `f: V\subset K^n \rightarrow K`, where `V` is the
+ codomain of `\varphi`. In other words, `f` is a `K`-valued function of the
+ coordinates associated to the chart `(U,\varphi)`.
+
+ The class :class:`CoordFunction` is an abstract one. Specific coordinate
+ functions must be implemented by derived classes, like
+ :class:`~sage.manifolds.coord_func_symb.CoordFunctionSymb` for
+ symbolic coordinate functions.
+
+ INPUT:
+
+ - ``chart`` -- the chart `(U, \varphi)`, as an instance of class
+ :class:`~sage.manifolds.chart.Chart`
+
+ """
+ def __init__(self, chart):
+ r"""
+ Base constructor for derived classes.
+
+ TEST::
+
+ sage: M = Manifold(2, 'M', structure='topological')
+ sage: X.<x,y> = M.chart()
+ sage: from sage.manifolds.coord_func import CoordFunction
+ sage: f = CoordFunction(X)
+
+ """
+ self._chart = chart
+ self._nc = len(chart[:]) # number of coordinates
+
+ # ----------------------------------------------------------------
+ # Methods that do not need to be re-implemented by derived classes
+ # ----------------------------------------------------------------
+
+ def chart(self):
+ r"""
+ Return the chart w.r.t. which the coordinate function is defined.
+
+ OUTPUT:
+
+ - an instance of :class:`~sage.manifolds.chart.Chart`
+
+ EXAMPLE::
+
+ sage: M = Manifold(2, 'M', structure='topological')
+ sage: X.<x,y> = M.chart()
+ sage: f = X.function(1+x+y^2)
+ sage: f.chart()
+ Chart (M, (x, y))
+ sage: f.chart() is X
+ True
+
+ """
+ return self._chart
+
+ def scalar_field(self, name=None, latex_name=None):
+ r"""
+ Construct the scalar field that has the coordinate function as
+ coordinate expression.
+
+ The domain of the scalar field is the open subset covered by the chart
+ on which the coordinate function is defined
+
+ INPUT:
+
+ - ``name`` -- (default: ``None``) name given to the scalar field
+ - ``latex_name`` -- (default: ``None``) LaTeX symbol to denote the
+ scalar field; if none is provided, the LaTeX symbol is set to ``name``
+
+ OUTPUT:
+
+ - instance of class
+ :class:`~sage.manifolds.scalarfield.ScalarField`
+
+ EXAMPLES:
+
+ Construction of a scalar field on a 2-dimensional manifold::
+
+ sage: M = Manifold(2, 'M', stru