summaryrefslogtreecommitdiffstats
path: root/src/sage/geometry/newton_polygon.py
blob: d8755fadca52fa340b60a2261aa88d7085b99ef2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
"""
Newton Polygons

This module implements finite Newton polygons and
infinite Newton polygons having a finite number of
slopes (and hence a last infinite slope).
"""

#############################################################################
#    Copyright (C) 2013 Xavier Caruso <xavier.caruso@normalesup.org>
#
#  Distributed under the terms of the GNU General Public License (GPL)
#
#                  http://www.gnu.org/licenses/
#############################################################################

from sage.structure.unique_representation import UniqueRepresentation
from sage.structure.parent import Parent
from sage.structure.element import Element
from sage.structure.sage_object import op_EQ, op_NE, op_LE, op_GE, op_LT
from sage.misc.cachefunc import cached_method

from sage.rings.infinity import Infinity
from sage.geometry.polyhedron.constructor import Polyhedron
from sage.geometry.polyhedron.base import is_Polyhedron


class NewtonPolygon_element(Element):
    """
    Class for infinite Newton polygons with last slope.
    """
    def __init__(self, polyhedron, parent):
        """
        Initialize a Newton polygon.

        INPUT:

        - polyhedron -- a polyhedron defining the Newton polygon

        TESTS:

            sage: from sage.geometry.newton_polygon import NewtonPolygon
            sage: NewtonPolygon([ (0,0), (1,1), (3,5) ])
            Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (3, 5)

            sage: NewtonPolygon([ (0,0), (1,1), (2,8), (3,5) ], last_slope=3)
            Infinite Newton polygon with 3 vertices: (0, 0), (1, 1), (3, 5) ending by an infinite line of slope 3

        ::

            sage: TestSuite(NewtonPolygon).run()
        """
        Element.__init__(self, parent)
        self._polyhedron = polyhedron
        self._vertices = None

    def _repr_(self):
        """
        Return a string representation of this Newton polygon.

        EXAMPLES:

            sage: from sage.geometry.newton_polygon import NewtonPolygon
            sage: NP = NewtonPolygon([ (0,0), (1,1), (2,5) ]); NP
            Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (2, 5)

            sage: NP._repr_()
            'Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (2, 5)'
        """
        vertices = self.vertices()
        length = len(vertices)
        if self.last_slope() is Infinity:
            if length == 0:
                return "Empty Newton polygon"
            elif length == 1:
                return "Finite Newton polygon with 1 vertex: %s" % str(vertices[0])
            else:
                return "Finite Newton polygon with %s vertices: %s" % (length, str(vertices)[1:-1])
        else:
            if length == 1:
                return "Newton Polygon consisting of a unique infinite line of slope %s starting at %s" % (self.last_slope(), str(vertices[0]))
            else:
                return "Infinite Newton polygon with %s vertices: %s ending by an infinite line of slope %s" % (length, str(vertices)[1:-1], self.last_slope())

    def vertices(self, copy=True):
        """
        Returns the list of vertices of this Newton polygon

        INPUT:

        - ``copy`` -- a boolean (default: ``True``)

        OUTPUT:

        The list of vertices of this Newton polygon (or a copy of it
        if ``copy`` is set to True)

        EXAMPLES:

            sage: from sage.geometry.newton_polygon import NewtonPolygon
            sage: NP = NewtonPolygon([ (0,0), (1,1), (2,5) ]); NP
            Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (2, 5)

            sage: v = NP.vertices(); v
            [(0, 0), (1, 1), (2, 5)]

        TESTS:

            sage: del v[0]
            sage: v
            [(1, 1), (2, 5)]
            sage: NP.vertices()
            [(0, 0), (1, 1), (2, 5)]
        """
        if self._vertices is None:
            self._vertices = [ tuple(v) for v in self._polyhedron.vertices() ]
            self._vertices.sort()
        if copy:
            return list(self._vertices)
        else:
            return self._vertices

    @cached_method
    def last_slope(self):
        """
        Returns the last (infinite) slope of this Newton polygon
        if it is infinite and ``+Infinity`` otherwise.

        EXAMPLES:

            sage: from sage.geometry.newton_polygon import NewtonPolygon
            sage: NP1 = NewtonPolygon([ (0,0), (1,1), (2,8), (3,5) ], last_slope=3)
            sage: NP1.last_slope()
            3

            sage: NP2 = NewtonPolygon([ (0,0), (1,1), (2,5) ])
            sage: NP2.last_slope()
            +Infinity

        We check that the last slope of a sum (resp. a produit) is the
        minimum of the last slopes of the summands (resp. the factors)::

            sage: (NP1 + NP2).last_slope()
            3
            sage: (NP1 * NP2).last_slope()
            3
        """
        rays = self._polyhedron.rays()
        for r in rays:
            if r[0] > 0:
                return r[1]/r[0]
        return Infinity

    def slopes(self, repetition=True):
        """
        Returns the slopes of this Newton polygon

        INPUT:

        - ``repetition`` -- a boolean (default: ``True``)

        OUTPUT:

        The consecutive slopes (not including the last slope
        if the polygon is infinity) of this Newton polygon.

        If ``repetition`` is True, each slope is repeated a number of
        times equal to its length. Otherwise, it appears only one time.

        EXAMPLES:

            sage: from sage.geometry.newton_polygon import NewtonPolygon
            sage: NP = NewtonPolygon([ (0,0), (1,1), (3,6) ]); NP
            Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (3, 6)

            sage: NP.slopes()
            [1, 5/2, 5/2]

            sage: NP.slopes(repetition=False)
            [1, 5/2]
        """
        slopes = [ ]
        vertices = self.vertices(copy=False)
        for i in range(1,len(vertices)):
            dx = vertices[i][0] - vertices[i-1][0]
            dy = vertices[i][1] - vertices[i-1][1]
            slope = dy/dx
            if repetition:
                slopes.extend(dx * [slope])
            else:
                slopes.append(slope)
        return slopes

    def _add_(self, other):
        """
        Returns the convex hull of ``self`` and ``other``

        INPUT:

        - ``other`` -- a Newton polygon

        OUTPUT:

        The Newton polygon, which is the convex hull of this Newton polygon and ``other``

        EXAMPLES:

            sage: from sage.geometry.newton_polygon import NewtonPolygon
            sage: NP1 = NewtonPolygon([ (0,0), (1,1), (2,6) ]); NP1
            Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (2, 6)
            sage: NP2 = NewtonPolygon([ (0,0), (1,3/2) ], last_slope=2); NP2
            Infinite Newton polygon with 2 vertices: (0, 0), (1, 3/2) ending by an infinite line of slope 2

            sage: NP1 + NP2
            Infinite Newton polygon with 2 vertices: (0, 0), (1, 1) ending by an infinite line of slope 2
        """
        polyhedron = self._polyhedron.convex_hull(other._polyhedron)
        return self.parent()(polyhedron)

    def _mul_(self, other):
        """
        Returns the Minkowski sum of ``self`` and ``other``

        INPUT:

        - ``other`` -- a Newton polygon

        OUTPUT:

        The Newton polygon, which is the Minkowski sum of this Newton polygon and ``other``.

        NOTE::

            If ``self`` and ``other`` are respective Newton polygons of some polynomials
            `f` and `g` the self*other is the Newton polygon of the product `fg`

        EXAMPLES:

            sage: from sage.geometry.newton_polygon import NewtonPolygon
            sage: NP1 = NewtonPolygon([ (0,0), (1,1), (2,6) ]); NP1
            Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (2, 6)
            sage: NP2 = NewtonPolygon([ (0,0), (1,3/2) ], last_slope=2); NP2
            Infinite Newton polygon with 2 vertices: (0, 0), (1, 3/2) ending by an infinite line of slope 2

            sage: NP = NP1 * NP2; NP
            Infinite Newton polygon with 3 vertices: (0, 0), (1, 1), (2, 5/2) ending by an infinite line of slope 2

        The slopes of ``NP`` is the union of thos of ``NP1`` and those of ``NP2``
        which are less than the last slope::

            sage: NP1.slopes()
            [1, 5]
            sage: NP2.slopes()
            [3/2]
            sage: NP.slopes()
            [1, 3/2]
        """
        polyhedron = self._polyhedron.Minkowski_sum(other._polyhedron)
        return self.parent()(polyhedron)

    def __pow__(self, exp, ignored=None):
        """
        Returns ``self`` dilated by ``exp``

        INPUT:

        - ``exp`` -- a positive integer

        OUTPUT:

        This Newton polygon scaled by a factor ``exp``.

        NOTE::

            If ``self`` is the Newton polygon of a polynomial `f`, then
            ``self^exp`` is the Newton polygon of `f^{exp}`.

        EXAMPLES:

            sage: from sage.geometry.newton_polygon import NewtonPolygon
            sage: NP = NewtonPolygon([ (0,0), (1,1), (2,6) ]); NP
            Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (2, 6)

            sage: NP^10
            Finite Newton polygon with 3 vertices: (0, 0), (10, 10), (20, 60)
        """
        polyhedron = self._polyhedron.dilation(exp)
        return self.parent()(polyhedron)

    def __lshift__(self, i):
        """
        Returns ``self`` shifted by `(0,i)`

        INPUT:

        - ``i`` -- a rational number

        OUTPUT:

        This Newton polygon shifted by the vector `(0,i)`

        EXAMPLES:

            sage: from sage.geometry.newton_polygon import NewtonPolygon
            sage: NP = NewtonPolygon([ (0,0), (1,1), (2,6) ]); NP
            Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (2, 6)

            sage: NP << 2
            Finite Newton polygon with 3 vertices: (0, 2), (1, 3), (2, 8)
        """
        polyhedron = self._polyhedron.translation((0,i))
        return self.parent()(polyhedron)

    def __rshift__(self, i):
        """
        Returns ``self`` shifted by `(0,-i)`

        INPUT:

        - ``i`` -- a rational number

        OUTPUT:

        This Newton polygon shifted by the vector `(0,-i)`

        EXAMPLES:

            sage: from sage.geometry.newton_polygon import NewtonPolygon
            sage: NP = NewtonPolygon([ (0,0), (1,1), (2,6) ]); NP
            Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (2, 6)

            sage: NP >> 2
            Finite Newton polygon with 3 vertices: (0, -2), (1, -1), (2, 4)
        """
        polyhedron = self._polyhedron.translation((0,-i))
        return self.parent()(polyhedron)

    def __call__(self, x):
        """
        Returns `self(x)`

        INPUT:

        - ``x`` -- a real number

        OUTPUT:

        The value of this Newton polygon at abscissa `x`

        EXAMPLES:

            sage: from sage.geometry.newton_polygon import NewtonPolygon
            sage: NP = NewtonPolygon([ (0,0), (1,1), (3,6) ]); NP
            Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (3, 6)

            sage: [ NP(i) for i in range(4) ]
            [0, 1, 7/2, 6]
        """
        # complexity: O(log(n))
        from sage.functions.other import floor
        vertices = self.vertices()
        lastslope = self.last_slope()
        if len(vertices) == 0 or x < vertices[0][0]:
            return Infinity
        if x == vertices[0][0]:
            return vertices[0][1]
        if x == vertices[-1][0]:
            return vertices[-1][1]
        if x > vertices[-1][0]:
            return vertices[-1][1] + lastslope * (x - vertices[-1][0])
        a = 0; b = len(vertices)
        while b - a > 1:
            c = floor((a+b)/2)
            if vertices[c][0] < x:
                a = c
            else:
                b = c
        (xg,yg) = vertices[a]
        (xd,yd) = vertices[b]
        return ((x-xg)*yd + (xd-x)*yg) / (xd-xg)

    def _richcmp_(self, other, op):
        r"""
        Comparisons of two Newton polygons.

        TESTS::

            sage: from sage.geometry.newton_polygon import NewtonPolygon

            sage: NP1 = NewtonPolygon([ (0,0), (1,1), (3,6) ])
            sage: NP2 = NewtonPolygon([ (0,0), (1,1), (2,6), (3,6) ])
            sage: NP1 == NP2
            True
            sage: NP1 != NP2
            False

            sage: NP1 >= NP1 and NP2 >= NP2
            True
            sage: NP1 > NP1 or NP2 > NP2
            False

            sage: NP1 = NewtonPolygon([ (0,0), (1,1), (2,6) ])
            sage: NP2 = NewtonPolygon([ (0,0), (1,3/2) ], last_slope=2)
            sage: NP3 = NP1 + NP2

            sage: NP1 <= NP2
            False
            sage: NP3 <= NP1
            True
            sage: NP3 <= NP2
            True

            sage: NP1 < NP1
            False
            sage: NP1 < NP2
            False

            sage: NP1 >= NP2
            False

            sage: NP1 >= NP3
            True

            sage: NP1 > NP1
            False
            sage: NP1 > NP2
            False

            sage: NP1 >= NP3 and NP2 >= NP3 and NP3 <= NP1 and NP3 <= NP2
            True
            sage: NP1 > NP3 and NP2 > NP3
            True
            sage: NP3 < NP2 and NP3 < NP1
            True
        """
        if self._polyhedron == other._polyhedron:
            return op == op_EQ or op == op_LE or op == op_GE
        elif op == op_NE:
            return True
        elif op == op_EQ:
            return False

        if op == op_LT or op == op_LE:
            if self.last_slope() > other.last_slope():
                return False
            return all(v in self._polyhedron for v in other.vertices())

        else:
            if self.last_slope() < other.last_slope():
                return False
            return all(v in other._polyhedron for v in self.vertices())

    def plot(self, **kwargs):
        """
        Plot this Newton polygon.

        .. NOTE::

            All usual rendering options (color, thickness, etc.) are available.

        EXAMPLES:

            sage: from sage.geometry.newton_polygon import NewtonPolygon
            sage: NP = NewtonPolygon([ (0,0), (1,1), (2,6) ])
            sage: polygon = NP.plot()
        """
        vertices = self.vertices()
        if len(vertices) == 0:
            from sage.plot.graphics import Graphics
            return Graphics()
        else:
            from sage.plot.line import line
            (xstart,ystart) = vertices[0]
            (xend,yend) = vertices[-1]
            if self.last_slope() is Infinity:
                return line([(xstart, ystart+1), (xstart,ystart+0.5)], linestyle="--", **kwargs) \
                     + line([(xstart, ystart+0.5)] + vertices + [(xend, yend+0.5)], **kwargs) \
                     + line([(xend, yend+0.5), (xend, yend+1)], linestyle="--", **kwargs)
            else:
                return line([(xstart, ystart+1), (xstart,ystart+0.5)], linestyle="--", **kwargs) \
                     + line([(xstart, ystart+0.5)] + vertices + [(xend+0.5, yend + 0.5*self.last_slope())], **kwargs) \
                     + line([(xend+0.5, yend + 0.5*self.last_slope()), (xend+1, yend+self.last_slope())], linestyle="--", **kwargs)

    def reverse(self, degree=None):
        """
        Returns the symmetric of ``self``

        INPUT:

        - ``degree`` -- an integer (default: the top right abscissa of
          this Newton polygon)

        OUTPUT:

        The image this Newton polygon under the symmetry
        '(x,y) \mapsto (degree-x, y)`

        EXAMPLES:

            sage: from sage.geometry.newton_polygon import NewtonPolygon
            sage: NP = NewtonPolygon([ (0,0), (1,1), (2,5) ])
            sage: NP2 = NP.reverse(); NP2
            Finite Newton polygon with 3 vertices: (0, 5), (1, 1), (2, 0)

        We check that the slopes of the symmetric Newton polygon are
        the opposites of the slopes of the original Newton polygon::

            sage: NP.slopes()
            [1, 4]
            sage: NP2.slopes()
            [-4, -1]
        """
        if self.last_slope() is not Infinity:
            raise ValueError("Can only reverse *finite* Newton polygons")
        if degree is None:
            degree = self.vertices()[-1][0]
        vertices = [ (degree-x,y) for (x,y) in self.vertices() ]
        vertices.reverse()
        parent = self.parent()
        polyhedron = Polyhedron(base_ring=parent.base_ring(), vertices=vertices, rays=[(0,1)])
        return parent(polyhedron)




class ParentNewtonPolygon(Parent, UniqueRepresentation):
    """
    Construct a Newton polygon.

    INPUT:

    - ``arg`` -- a list/tuple/iterable of vertices or of
      slopes. Currently, slopes must be rational numbers.

    - ``sort_slopes`` -- boolean (default: ``True``). Specifying
      whether slopes must be first sorted

    - ``last_slope`` -- rational or infinity (default:
      ``Infinity``). The last slope of the Newton polygon

    OUTPUT:

    The corresponding Newton polygon.

    .. note::

        By convention, a Newton polygon always contains the point
        at infinity `(0, \infty)`. These polygons are attached to
        polynomials or series over discrete valuation rings (e.g. padics).

    EXAMPLES:

    We specify here a Newton polygon by its vertices::

        sage: from sage.geometry.newton_polygon import NewtonPolygon
        sage: NewtonPolygon([ (0,0), (1,1), (3,5) ])
        Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (3, 5)

    We note that the convex hull of the vertices is automatically
    computed::

        sage: NewtonPolygon([ (0,0), (1,1), (2,8), (3,5) ])
        Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (3, 5)

    Note that the value ``+Infinity`` is allowed as the second coordinate
    of a vertex::

        sage: NewtonPolygon([ (0,0), (1,Infinity), (2,8), (3,5) ])
        Finite Newton polygon with 2 vertices: (0, 0), (3, 5)

    If last_slope is set, the returned Newton polygon is infinite
    and ends with an infinite line having the specified slope::

        sage: NewtonPolygon([ (0,0), (1,1), (2,8), (3,5) ], last_slope=3)
        Infinite Newton polygon with 3 vertices: (0, 0), (1, 1), (3, 5) ending by an infinite line of slope 3

    Specifying a last slope may discard some vertices::

        sage: NewtonPolygon([ (0,0), (1,1), (2,8), (3,5) ], last_slope=3/2)
        Infinite Newton polygon with 2 vertices: (0, 0), (1, 1) ending by an infinite line of slope 3/2

    Next, we define a Newton polygon by its slopes::

        sage: NP = NewtonPolygon([0, 1/2, 1/2, 2/3, 2/3, 2/3, 1, 1])
        sage: NP
        Finite Newton polygon with 5 vertices: (0, 0), (1, 0), (3, 1), (6, 3), (8, 5)
        sage: NP.slopes()
        [0, 1/2, 1/2, 2/3, 2/3, 2/3, 1, 1]

    By default, slopes are automatically sorted::

        sage: NP2 = NewtonPolygon([0, 1, 1/2, 2/3, 1/2, 2/3, 1, 2/3])
        sage: NP2
        Finite Newton polygon with 5 vertices: (0, 0), (1, 0), (3, 1), (6, 3), (8, 5)
        sage: NP == NP2
        True

    except if the contrary is explicitely mentioned::

        sage: NewtonPolygon([0, 1, 1/2, 2/3, 1/2, 2/3, 1, 2/3], sort_slopes=False)
        Finite Newton polygon with 4 vertices: (0, 0), (1, 0), (6, 10/3), (8, 5)

    Slopes greater that or equal last_slope (if specified) are discarded::

        sage: NP = NewtonPolygon([0, 1/2, 1/2, 2/3, 2/3, 2/3, 1, 1], last_slope=2/3)
        sage: NP
        Infinite Newton polygon with 3 vertices: (0, 0), (1, 0), (3, 1) ending by an infinite line of slope 2/3
        sage: NP.slopes()
        [0, 1/2, 1/2]

    Be careful, do not confuse Newton polygons provided by this class
    with Newton polytopes. Compare::

        sage: NP = NewtonPolygon([ (0,0), (1,45), (3,6) ]); NP
        Finite Newton polygon with 2 vertices: (0, 0), (3, 6)

        sage: x, y = polygen(QQ,'x, y')
        sage: p = 1 + x*y**45 + x**3*y**6
        sage: p.newton_polytope()
        A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices
        sage: p.newton_polytope().vertices()
        (A vertex at (0, 0), A vertex at (1, 45), A vertex at (3, 6))
    """

    Element = NewtonPolygon_element

    def __init__(self):
        """
        Parent class for all Newton polygons.

            sage: from sage.geometry.newton_polygon import ParentNewtonPolygon
            sage: ParentNewtonPolygon()
            Parent for Newton polygons

        TESTS:

        This class is a singleton.

            sage: ParentNewtonPolygon() is ParentNewtonPolygon()
            True

        ::

            sage: TestSuite(ParentNewtonPolygon()).run()
        """
        from sage.categories.semirings import Semirings
        from sage.rings.rational_field import QQ
        Parent.__init__(self, category=Semirings(), base=QQ)

    def _repr_(self):
        """
        Returns the string representation of this parent,
        which is ``Parent for Newton polygons``

        TESTS:

            sage: from sage.geometry.newton_polygon import NewtonPolygon
            sage: NewtonPolygon
            Parent for Newton polygons

            sage: NewtonPolygon._repr_()
            'Parent for Newton polygons'
        """
        return "Parent for Newton polygons"

    def _an_element_(self):
        """
        Returns a Newton polygon (which is the empty one)

        TESTS:

            sage: from sage.geometry.newton_polygon import NewtonPolygon
            sage: NewtonPolygon._an_element_()
            Empty Newton polygon
        """
        return self(Polyhedron(base_ring=self.base_ring(), ambient_dim=2))

    def _element_constructor_(self, arg, sort_slopes=True, last_slope=Infinity):
        """
        INPUT:

        - ``arg`` -- an argument describing the Newton polygon

        - ``sort_slopes`` -- boolean (default: ``True``). Specifying
          whether slopes must be first sorted

        - ``last_slope`` -- rational or infinity (default:
          ``Infinity``). The last slope of the Newton polygon

        The first argument ``arg`` can be either:

        - a polyhedron in `\QQ^2`

        - the element ``0`` (corresponding to the empty Newton polygon)

        - the element ``1`` (corresponding to the Newton polygon of the
          constant polynomial equal to 1)

        - a list/tuple/iterable of vertices

        - a list/tuple/iterable of slopes

        OUTPUT:

        The corresponding Newton polygon.

        For more informations, see :class:`ParentNewtonPolygon`.

        TESTS:

            sage: from sage.geometry.newton_polygon import NewtonPolygon
            sage: NewtonPolygon(0)
            Empty Newton polygon
            sage: NewtonPolygon(1)
            Finite Newton polygon with 1 vertex: (0, 0)
        """
        if is_Polyhedron(arg):
            return self.element_class(arg, parent=self)
        if arg == 0:
            polyhedron = Polyhedron(base_ring=self.base_ring(), ambient_dim=2)
            return self.element_class(polyhedron, parent=self)
        if arg == 1:
            polyhedron = Polyhedron(base_ring=self.base_ring(),
                                    vertices=[(0,0)], rays=[(0,1)])
            return self.element_class(polyhedron, parent=self)
        if not isinstance(arg, list):
            try:
                arg = list(arg)
            except TypeError:
                raise TypeError("argument must be a list of coordinates or a list of (rational) slopes")
        if len(arg) > 0 and arg[0] in self.base_ring():
            if sort_slopes: arg.sort()
            x = y = 0
            vertic